Universität Bayreuth unterstützt serienmäßige Herstellung von modularen Elektrolyseuren


Im H₂Giga-Projekt geht es um die Erforschung, Entwicklung und industrielle Fertigung leistungsstarker und kostengünstiger Elektrolyseure, mit denen der Bedarf Deutschlands an Grünem Wasserstoff künftig gedeckt werden kann. Innerhalb der „Scale-Up-Projekte“ von H₂Giga koordiniert die Firma Sunfire das H₂Giga-Projekt „HTs: HTEL-Stacks – Ready for Gigawatt“. Für Forschungsarbeiten in diesem H₂Giga-Projekt erhält der Lehrstuhl Keramische Werkstoffe für knapp vier Jahre eine Förderung von mehr als 950.000 €.


Die Hochtemperaturelektrolyse (HTEL) hat sich als eine besonders vielversprechende Technologie zur Erzeugung von Grünem Wasserstoff erwiesen. Als Elektrolyseure dienen hintereinander geschaltete HTEL-Zellen, die als HTEL-Stacks bezeichnet werden. Damit der Energiewirtschaft in Zukunft großskalige HTEL-Zellen und HTEL-Stacks zur Verfügung stehen, sind allerdings noch erhebliche Forschungs- und Entwicklungsschritte nötig: Sie betreffen die Lebensdauer, die Materialkosten, die Effizienz, neue Technologien zur Fertigung der Stacks sowie deren Einsatz für die Wasserstoffproduktion in den benötigten hohen Mengen.


Erkenntnisse sollen Langlebigkeit der Elektrolyseurzellen garantieren


Genau hier setzt das H₂Giga-Projekt „HTs: HTEL-Stacks – Ready for Gigawatt“ an. Der Lehrstuhl Keramische Werkstoffe an der Universität Bayreuth ist hier für entscheidende Forschungs- und Entwicklungsschritte verantwortlich: Sowohl neue als auch schon im Betrieb befindliche Elektrolyseurzellen, die auf einem Elektrolyten aus Zirkonoxid basieren, sollen auf ihre Mikrostruktur und thermomechanischen Eigenschaften hin untersucht werden. Dabei ist es besonders wichtig, dass die Festigkeit der Zellen bei hohen Temperaturen bis zu 850 Grad Celsius erhalten bleibt. Nur wenn die Zusammenhänge zwischen der Mikrostruktur und thermomechanischen Eigenschaften wissenschaftlich verstanden sind, wird es möglich sein, Alterungsprozesse in den Zellen vorherzusagen und Strategien für eine hohe Langlebigkeit zu entwickeln.


„Mit den speziellen Kompetenzen und langjährigen Forschungserfahrungen, die wir in früheren Projekten zur Brennstoffzelle und zur Charakterisierung von sehr dünnen keramischen Folien gewonnen haben, werden wir von Bayreuth aus wichtige Beiträge zu einer nachhaltigen Energiewirtschaft auf der Basis von Wasserstoff leisten können“, sagt Professor Stefan Schafföner, Inhaber des Lehrstuhls Keramische Werkstoffe. Die Forschungsarbeiten seines Teams werden rückwirkend ab dem 1. Mai 2021 bis zum 31. März 2025 gefördert.


Neue Hochtemperatur-Prüfanlage kommt zum Einsatz


Bei den anstehenden Arbeiten in Bayreuth werden experimentelle Forschungsmethoden zum Einsatz kommen, wie beispielsweise die Licht- und Rasterelektronenmikroskopie, die Röntgenbeugung und die zerstörungsfreie Impulserregungstechnik. Mechanische Kennwerte an den keramischen dünnen Schichten werden dabei bei bis zu 850 Grad Celsius durch Doppelring-Biegeversuche sowie Zugversuche unter Verwendung des Laserextensometers ermittelt. Hierfür wird die neue, einzigartige Hochtemperatur-Prüfanlage des Lehrstuhls eingesetzt, die Ende 2020 in Betrieb ging und durch Mittel der Deutschen Forschungsgemeinschaft (DFG) sowie der TechnologieAllianzOberfranken finanziert wurde.


Neben den experimentellen Arbeiten werden auch Simulationen mithilfe der Finite-Elemente-Methode zur Analyse der Lebensdauer durchgeführt. Vor allem bei Fragen zur industriellen Umsetzung der HTEL-Stacks arbeitet der Lehrstuhl Keramische Werkstoffe mit zahlreichen Unternehmen aus Industrie und Forschung zusammen, die ebenfalls am H₂Giga-Projekt „HTs: HTEL-Stacks – Ready for Gigawatt“ beteiligt sind. Die organisatorische Gesamtleitung liegt bei der Sunfire GmbH in Dresden.